The benefits you enjoy working as a freelance writer:
  • Manage your time and workload yourself
  • Payments always on time
  • 24/7 available support team
  • Orders in the sphere of your interest
  • Working from home
  • No registration fees
  • High wages

Blog Post

iegen values and eigen vectors

Finding of eigenvalues and eigenvectors

This calculator allows to find eigenvalues and eigenvectors using the Characteristic polynomial.

Matrix A:(

4

1

7

5

8

2

3

7

8

)

()

CellsClean+−

Find

More:Diagonal matrixJordan decompositionMatrix exponential

Display decimals, number of significant digits:

Clean

  1. Insert in A

    Insert in B

    Clean

     

    1. Find eigenvalues from the characteristic polynomial:

      |4−λ1758−λ2378−λ|=−λ3+20⁢λ2−88⁢λ+243=(?)−(λ+(−15.3))⋅(λ+(−2.36+3.22⋅ⅈ))⋅(λ+(−2.36−3.22⋅ⅈ))

      Details (Triangle's rule)

      Details (Rule of Sarrus)

      Details (Montante's method (Bareiss algorithm))

      Details (Gaussian elimination)

      1. λ1≈15.3
      2. λ2≈2.36−3.22⋅ⅈ
      3. λ3≈2.36+3.22⋅ⅈ
    2. For every λ we find its own vector(s):

      1. λ1≈15.3

        A−λ1⁢I≈(−11.3175−7.28237−7.28)

        A⁢v=λ⁢v *

        (A−λ⁢I)⋅v=0

        So we have a homogeneous system of linear equations, we solve it by Gaussian Elimination:

        (−11.31705−7.282037−7.280)

        ⋅(−0.0886)

        ~R1∕(−11.3)→R1−11.3≠0?Divide row 1 by −11.3:a1,1=−11.3⋅(1−11.3)=1a1,2=1⋅(1−11.3)≈−0.0886a1,3=7⋅(1−11.3)≈−0.620a1,4=0⋅(1−11.3)=0(1−0.0886−0.62005−7.282037−7.280)

        ⋅(−5)

        ~R2−5⋅R1→R2?Subtract 5 × row 1 from row 2:a2,1=5−51⋅1=0a2,2=−7.28−51⋅(−0.0886)≈−6.84a2,3=2−51⋅(−0.620)≈5.10a2,4=0−51⋅0=0(1−0.0886−0.62000−6.845.10037−7.280)

        ⋅(−3)

        ~R3−3⋅R1→R3?Subtract 3 × row 1 from row 3:a3,1=3−31⋅1=0a3,2=7−31⋅(−0.0886)≈7.27a3,3=−7.28−31⋅(−0.620)≈−5.42a3,4=0−31⋅0=0(1−0.0886−0.62000−6.845.10007.27−5.420)

        ⋅(−0.146)

        ~R2∕(−6.84)→R2−6.84≠0?Divide row 2 by −6.84:a2,1=0⋅(1−6.84)=0a2,2=−6.84⋅(1−6.84)=1a2,3=5.10⋅(1−6.84)≈−0.746a2,4=0⋅(1−6.84)=0(1−0.0886−0.620001−0.746007.27−5.420)

        ⋅(−7.27)

        ~R3−7.27⋅R2→R3?Subtract 7.27 × row 2 from row 3:a3,1=0−7.271⋅0=0a3,2=7.27−7.271⋅1=0a3,3=−5.42−7.271⋅(−0.746)=0a3,4=0−7.271⋅0=0(1−0.0886−0.620001−0.74600000)

        ⋅(0.0886)

        ~R1−−0.0886⋅R2→R1?Subtract −0.0886 × row 2 from row 1:a1,1=1−−0.08861⋅0=1a1,2=−0.0886−−0.08861⋅1=0a1,3=−0.620−−0.08861⋅(−0.746)≈−0.687a1,4=0−−0.08861⋅0=0(10−0.687001−0.74600000)
        {x1+−0.687⋅x3=0x2+−0.746⋅x3=0 (1)
        • Find the variable x2 from the equation 2 of the system (1):

          x2=0.746⁢x3

        • Find the variable x1 from the equation 1 of the system (1):

          x1=0.687⁢x3

        Answer:

        • x1=0.687⁢x3
        • x2=0.746⁢x3
        • x3=x3
        (−11.3≠0,−6.84≠0)

        General Solution: X=(0.687⁢x30.746⁢x3x3)

        The solution set: {x3⋅(0.6870.7461)}

        Let x3=1, v1≈(0.6870.7461)

      2. λ2≈2.36−3.22⋅ⅈ

        A−λ2⁢I≈(1.64+3.22⋅ⅈ1755.64+3.22⋅ⅈ2375.64+3.22⋅ⅈ)

        A⁢v=λ⁢v *

        (A−λ⁢I)⋅v=0

        So we have a homogeneous system of linear equations, we solve it by Gaussian Elimination:

        (1.64+3.22⋅ⅈ17055.64+3.22⋅ⅈ20375.64+3.22⋅ⅈ0)

        ⋅(0.126−0.247⋅ⅈ)

        ~R1∕(1.64+3.22⋅ⅈ)→R11.64+3.22⋅ⅈ≠0?Divide row 1 by 1.64+3.22⋅ⅈ:a1,1=1.64+3.22⋅ⅈ⋅(11.64+3.22⋅ⅈ)=1a1,2=1⋅(11.64+3.22⋅ⅈ)≈0.126−0.247⋅ⅈa1,3=7⋅(11.64+3.22⋅ⅈ)≈0.882−1.73⋅ⅈa1,4=0⋅(11.64+3.22⋅ⅈ)=0(10.126−0.247⋅ⅈ0.882−1.73⋅ⅈ055.64+3.22⋅ⅈ20375.64+3.22⋅ⅈ0)

        ⋅(−5)

        ~R2−5⋅R1→R2?Subtract 5 × row 1 from row 2:a2,1=5−51⋅1=0a2,2=5.64+3.22⋅ⅈ−51⋅(0.126−0.247⋅ⅈ)≈5.01+4.45⋅ⅈa2,3=2−51⋅(0.882−1.73⋅ⅈ)≈−2.41+8.64⋅ⅈa2,4=0−51⋅0=0(10.126−0.247⋅ⅈ0.882−1.73⋅ⅈ005.01+4.45⋅ⅈ−2.41+8.64⋅ⅈ0375.64+3.22⋅ⅈ0)

        ⋅(−3)

        ~R3−3⋅R1→R3?Subtract 3 × row 1 from row 3:a3,1=3−31⋅1=0a3,2=7−31⋅(0.126−0.247⋅ⅈ)≈6.62+0.740⋅ⅈa3,3=5.64+3.22⋅ⅈ−31⋅(0.882−1.73⋅ⅈ)≈3.00+8.40⋅ⅈa3,4=0−31⋅0=0(10.126−0.247⋅ⅈ0.882−1.73⋅ⅈ005.01+4.45⋅ⅈ−2.41+8.64⋅ⅈ006.62+0.740⋅ⅈ3.00+8.40⋅ⅈ0)

        ⋅(0.112−0.0991⋅ⅈ)

        ~R2∕(5.01+4.45⋅ⅈ)→R25.01+4.45⋅ⅈ≠0?Divide row 2 by 5.01+4.45⋅ⅈ:a2,1=0⋅(15.01+4.45⋅ⅈ)=0a2,2=5.01+4.45⋅ⅈ⋅(15.01+4.45⋅ⅈ)=1a2,3=−2.41+8.64⋅ⅈ⋅(15.01+4.45⋅ⅈ)≈0.587+1.20⋅ⅈa2,4=0⋅(15.01+4.45⋅ⅈ)=0(10.126−0.247⋅ⅈ0.882−1.73⋅ⅈ0010.587+1.20⋅ⅈ006.62+0.740⋅ⅈ3.00+8.40⋅ⅈ0)

        ⋅(−6.62−0.740⋅ⅈ)

        ~R3−6.62+0.740⋅ⅈ⋅R2→R3?Subtract 6.62+0.740⋅ⅈ × row 2 from row 3:a3,1=0−6.62+0.740⋅ⅈ1⋅0=0a3,2=6.62+0.740⋅ⅈ−6.62+0.740⋅ⅈ1⋅1=0a3,3=3.00+8.40⋅ⅈ−6.62+0.740⋅ⅈ1⋅(0.587+1.20⋅ⅈ)=0a3,4=0−6.62+0.740⋅ⅈ1⋅0=0(10.126−0.247⋅ⅈ0.882−1.73⋅ⅈ0010.587+1.20⋅ⅈ00000)

        ⋅(−0.126+0.247⋅ⅈ)

        ~R1−0.126−0.247⋅ⅈ⋅R2→R1?Subtract 0.126−0.247⋅ⅈ × row 2 from row 1:a1,1=1−0.126−0.247⋅ⅈ1⋅0=1a1,2=0.126−0.247⋅ⅈ−0.126−0.247⋅ⅈ1⋅1=0a1,3=0.882−1.73⋅ⅈ−0.126−0.247⋅ⅈ1⋅(0.587+1.20⋅ⅈ)≈0.511−1.73⋅ⅈa1,4=0−0.126−0.247⋅ⅈ1⋅0=0(100.511−1.73⋅ⅈ0010.587+1.20⋅ⅈ00000)
        {x1+0.511−1.73⋅ⅈ⋅x3=0x2+0.587+1.20⋅ⅈ⋅x3=0 (1)
        • Find the variable x2 from the equation 2 of the system (1):

          x2=−0.587−1.20⋅ⅈ⁢x3

        • Find the variable x1 from the equation 1 of the system (1):

          x1=−0.511+1.73⋅ⅈ⁢x3

        Answer:

        • x1=−0.511+1.73⋅ⅈ⁢x3
        • x2=−0.587−1.20⋅ⅈ⁢x3
        • x3=x3
        (1.64+3.22⋅ⅈ≠0,5.01+4.45⋅ⅈ≠0)

        General Solution: X=(−0.511+1.73⋅ⅈ⁢x3−0.587−1.20⋅ⅈ⁢x3x3)

        The solution set: {x3⋅(−0.511+1.73⋅ⅈ−0.587−1.20⋅ⅈ1)}

        Let x3=1, v2≈(−0.511+1.73⋅ⅈ−0.587−1.20⋅ⅈ1)

      3. λ3≈2.36+3.22⋅ⅈ

        A−λ3⁢I≈(1.64−3.22⋅ⅈ1755.64−3.22⋅ⅈ2375.64−3.22⋅ⅈ)

        A⁢v=λ⁢v *

        (A−λ⁢I)⋅v=0

        So we have a homogeneous system of linear equations, we solve it by Gaussian Elimination:

        (1.64−3.22⋅ⅈ17055.64−3.22⋅ⅈ20375.64−3.22⋅ⅈ0)

        ⋅(0.126+0.247⋅ⅈ)

        ~R1∕(1.64−3.22⋅ⅈ)→R11.64−3.22⋅ⅈ≠0?Divide row 1 by 1.64−3.22⋅ⅈ:a1,1=1.64−3.22⋅ⅈ⋅(11.64−3.22⋅ⅈ)=1a1,2=1⋅(11.64−3.22⋅ⅈ)≈0.126+0.247⋅ⅈa1,3=7⋅(11.64−3.22⋅ⅈ)≈0.882+1.73⋅ⅈa1,4=0⋅(11.64−3.22⋅ⅈ)=0(10.126+0.247⋅ⅈ0.882+1.73⋅ⅈ055.64−3.22⋅ⅈ20375.64−3.22⋅ⅈ0)

        ⋅(−5)

        ~R2−5⋅R1→R2?Subtract 5 × row 1 from row 2:a2,1=5−51⋅1=0a2,2=5.64−3.22⋅ⅈ−51⋅(0.126+0.247⋅ⅈ)≈5.01−4.45⋅ⅈa2,3=2−51⋅(0.882+1.73⋅ⅈ)≈−2.41−8.64⋅ⅈa2,4=0−51⋅0=0(10.126+0.247⋅ⅈ0.882+1.73⋅ⅈ005.01−4.45⋅ⅈ−2.41−8.64⋅ⅈ0375.64−3.22⋅ⅈ0)

        ⋅(−3)

        ~R3−3⋅R1→R3?Subtract 3 × row 1 from row 3:a3,1=3−31⋅1=0a3,2=7−31⋅(0.126+0.247⋅ⅈ)≈6.62−0.740⋅ⅈa3,3=5.64−3.22⋅ⅈ−31⋅(0.882+1.73⋅ⅈ)≈3.00−8.40⋅ⅈa3,4=0−31⋅0=0(10.126+0.247⋅ⅈ0.882+1.73⋅ⅈ005.01−4.45⋅ⅈ−2.41−8.64⋅ⅈ006.62−0.740⋅ⅈ3.00−8.40⋅ⅈ0)

        ⋅(0.112+0.0991⋅ⅈ)

        ~R2∕(5.01−4.45⋅ⅈ)→R25.01−4.45⋅ⅈ≠0?Divide row 2 by 5.01−4.45⋅ⅈ:a2,1=0⋅(15.01−4.45⋅ⅈ)=0a2,2=5.01−4.45⋅ⅈ⋅(15.01−4.45⋅ⅈ)=1a2,3=−2.41−8.64⋅ⅈ⋅(15.01−4.45⋅ⅈ)≈0.587−1.20⋅ⅈa2,4=0⋅(15.01−4.45⋅ⅈ)=0(10.126+0.247⋅ⅈ0.882+1.73⋅ⅈ0010.587−1.20⋅ⅈ006.62−0.740⋅ⅈ3.00−8.40⋅ⅈ0)

        ⋅(−6.62+0.740⋅ⅈ)

        ~R3−6.62−0.740⋅ⅈ⋅R2→R3?Subtract 6.62−0.740⋅ⅈ × row 2 from row 3:a3,1=0−6.62−0.740⋅ⅈ1⋅0=0a3,2=6.62−0.740⋅ⅈ−6.62−0.740⋅ⅈ1⋅1=0a3,3=3.00−8.40⋅ⅈ−6.62−0.740⋅ⅈ1⋅(0.587−1.20⋅ⅈ)=0a3,4=0−6.62−0.740⋅ⅈ1⋅0=0(10.126+0.247⋅ⅈ0.882+1.73⋅ⅈ0010.587−1.20⋅ⅈ00000)

        ⋅(−0.126−0.247⋅ⅈ)

        ~R1−0.126+0.247⋅ⅈ⋅R2→R1?Subtract 0.126+0.247⋅ⅈ × row 2 from row 1:a1,1=1−0.126+0.247⋅ⅈ1⋅0=1a1,2=0.126+0.247⋅ⅈ−0.126+0.247⋅ⅈ1⋅1=0a1,3=0.882+1.73⋅ⅈ−0.126+0.247⋅ⅈ1⋅(0.587−1.20⋅ⅈ)≈0.511+1.73⋅ⅈa1,4=0−0.126+0.247⋅ⅈ1⋅0=0(100.511+1.73⋅ⅈ0010.587−1.20⋅ⅈ00000)
        {x1+0.511+1.73⋅ⅈ⋅x3=0x2+0.587−1.20⋅ⅈ⋅x3=0 (1)
        • Find the variable x2 from the equation 2 of the system (1):

          x2=−0.587+1.20⋅ⅈ⁢x3

        • Find the variable x1 from the equation 1 of the system (1):

          x1=−0.511−1.73⋅ⅈ⁢x3

        Answer:

        • x1=−0.511−1.73⋅ⅈ⁢x3
        • x2=−0.587+1.20⋅ⅈ⁢x3
        • x3=x3
        (1.64−3.22⋅ⅈ≠0,5.01−4.45⋅ⅈ≠0)

        General Solution: X=(−0.511−1.73⋅ⅈ⁢x3−0.587+1.20⋅ⅈ⁢x3x3)

        The solution set: {x3⋅(−0.511−1.73⋅ⅈ−0.587+1.20⋅ⅈ1)}

        Let x3=1, v3≈(−0.511−1.73⋅ⅈ−0.587+1.20⋅ⅈ1)

  2. Insert in A

    Insert in B

    Clean

     

    (417582378)≈(0.687−0.511+1.734⋅ⅈ−0.511−1.734⋅ⅈ0.746−0.587−1.202⋅ⅈ−0.587+1.202⋅ⅈ111)⋅(15.2820002.359−3.215⋅ⅈ0002.359+3.215⋅ⅈ)⋅(0.3210.4620.435−0.160−0.178⋅ⅈ−0.231+0.160⋅ⅈ0.282+0.003⋅ⅈ−0.160+0.178⋅ⅈ−0.231−0.160⋅ⅈ0.282−0.003⋅ⅈ)

    Details

  3. Insert in A

    Insert in B

    Clean

     

    1. Find eigenvalues from the characteristic polynomial:

      |4−λ1758−λ2378−λ|=−λ3+20⁢λ2−88⁢λ+243=(?)−(λ+(−15.282))⋅(λ+(−2.359+3.215⋅ⅈ))⋅(λ+(−2.359−3.215⋅ⅈ))

      Details (Triangle's rule)

      Details (Rule of Sarrus)

      Details (Montante's method (Bareiss algorithm))

      Details (Gaussian elimination)

      1. λ1≈15.282
      2. λ2≈2.359−3.215⋅ⅈ
      3. λ3≈2.359+3.215⋅ⅈ
    2. For every λ we find its own vector(s):

      1. λ1≈15.282

        A−λ1⁢I≈(−11.282175−7.282237−7.282)

        A⁢v=λ⁢v *

        (A−λ⁢I)⋅v=0

        So we have a homogeneous system of linear equations, we solve it by Gaussian Elimination:

        (−11.2821705−7.2822037−7.2820)

        ⋅(−0.089)

        ~R1∕(−11.282)→R1−11.282≠0?Divide row 1 by −11.282:a1,1=−11.282⋅(1−11.282)=1a1,2=1⋅(1−11.282)≈−0.089a1,3=7⋅(1−11.282)≈−0.620a1,4=0⋅(1−11.282)=0(1−0.089−0.62005−7.2822037−7.2820)

        ⋅(−5)

        ~R2−5⋅R1→R2?Subtract 5 × row 1 from row 2:a2,1=5−51⋅1=0a2,2=−7.282−51⋅(−0.089)≈−6.839a2,3=2−51⋅(−0.620)≈5.102a2,4=0−51⋅0=0(1−0.089−0.62000−6.8395.102037−7.2820)

        ⋅(−3)

        ~R3−3⋅R1→R3?Subtract 3 × row 1 from row 3:a3,1=3−31⋅1=0a3,2=7−31⋅(−0.089)≈7.266a3,3=−7.282−31⋅(−0.620)≈−5.421a3,4=0−31⋅0=0(1−0.089−0.62000−6.8395.102007.266−5.4210)

        ⋅(−0.146)

        ~R2∕(−6.839)→R2−6.839≠0?Divide row 2 by −6.839:a2,1=0⋅(1−6.839)=0a2,2=−6.839⋅(1−6.839)=1a2,3=5.102⋅(1−6.839)≈−0.746a2,4=0⋅(1−6.839)=0(1−0.089−0.620001−0.746007.266−5.4210)

        ⋅(−7.266)

        ~R3−7.266⋅R2→R3?Subtract 7.266 × row 2 from row 3:a3,1=0−7.2661⋅0=0a3,2=7.266−7.2661⋅1=0a3,3=−5.421−7.2661⋅(−0.746)=0a3,4=0−7.2661⋅0=0(1−0.089−0.620001−0.74600000)

        ⋅(0.089)

        ~R1−−0.089⋅R2→R1?Subtract −0.089 × row 2 from row 1:a1,1=1−−0.0891⋅0=1a1,2=−0.089−−0.0891⋅1=0a1,3=−0.620−−0.0891⋅(−0.746)≈−0.687a1,4=0−−0.0891⋅0=0(10−0.687001−0.74600000)
        {x1+−0.687⋅x3=0x2+−0.746⋅x3=0 (1)
        • Find the variable x2 from the equation 2 of the system (1):

          x2=0.746⁢x3

        • Find the variable x1 from the equation 1 of the system (1):

          x1=0.687⁢x3

        Answer:

        • x1=0.687⁢x3
        • x2=0.746⁢x3
        • x3=x3
        (−11.282≠0,−6.839≠0)

        General Solution: X=(0.687⁢x30.746⁢x3x3)

        The solution set: {x3⋅(0.6870.7461)}

        Let x3=1, v1≈(0.6870.7461)

      2. λ2≈2.359−3.215⋅ⅈ

        A−λ2⁢I≈(1.641+3.215⋅ⅈ1755.641+3.215⋅ⅈ2375.641+3.215⋅ⅈ)

        A⁢v=λ⁢v *

        (A−λ⁢I)⋅v=0

        So we have a homogeneous system of linear equations, we solve it by Gaussian Elimination:

        (1.641+3.215⋅ⅈ17055.641+3.215⋅ⅈ20375.641+3.215⋅ⅈ0)

        ⋅(0.126−0.247⋅ⅈ)

        ~R1∕(1.641+3.215⋅ⅈ)→R11.641+3.215⋅ⅈ≠0?Divide row 1 by 1.641+3.215⋅ⅈ:a1,1=1.641+3.215⋅ⅈ⋅(11.641+3.215⋅ⅈ)=1a1,2=1⋅(11.641+3.215⋅ⅈ)≈0.126−0.247⋅ⅈa1,3=7⋅(11.641+3.215⋅ⅈ)≈0.882−1.727⋅ⅈa1,4=0⋅(11.641+3.215⋅ⅈ)=0(10.126−0.247⋅ⅈ0.882−1.727⋅ⅈ055.641+3.215⋅ⅈ20375.641+3.215⋅ⅈ0)

        ⋅(−5)

        ~R2−5⋅R1→R2?Subtract 5 × row 1 from row 2:a2,1=5−51⋅1=0a2,2=5.641+3.215⋅ⅈ−51⋅(0.126−0.247⋅ⅈ)≈5.011+4.449⋅ⅈa2,3=2−51⋅(0.882−1.727⋅ⅈ)≈−2.408+8.636⋅ⅈa2,4=0−51⋅0=0(10.126−0.247⋅ⅈ0.882−1.727⋅ⅈ005.011+4.449⋅ⅈ−2.408+8.636⋅ⅈ0375.641+3.215⋅ⅈ0)

        ⋅(−3)

        ~R3−3⋅R1→R3?Subtract 3 × row 1 from row 3:a3,1=3−31⋅1=0a3,2=7−31⋅(0.126−0.247⋅ⅈ)≈6.622+0.740⋅ⅈa3,3=5.641+3.215⋅ⅈ−31⋅(0.882−1.727⋅ⅈ)≈2.996+8.397⋅ⅈa3,4=0−31⋅0=0(10.126−0.247⋅ⅈ0.882−1.727⋅ⅈ005.011+4.449⋅ⅈ−2.408+8.636⋅ⅈ006.622+0.740⋅ⅈ2.996+8.397⋅ⅈ0)

        ⋅(0.112−0.099⋅ⅈ)

        ~R2∕(5.011+4.449⋅ⅈ)→R25.011+4.449⋅ⅈ≠0?Divide row 2 by 5.011+4.449⋅ⅈ:a2,1=0⋅(15.011+4.449⋅ⅈ)=0a2,2=5.011+4.449⋅ⅈ⋅(15.011+4.449⋅ⅈ)=1a2,3=−2.408+8.636⋅ⅈ⋅(15.011+4.449⋅ⅈ)≈0.587+1.202⋅ⅈa2,4=0⋅(15.011+4.449⋅ⅈ)=0(10.126−0.247⋅ⅈ0.882−1.727⋅ⅈ0010.587+1.202⋅ⅈ006.622+0.740⋅ⅈ2.996+8.397⋅ⅈ0)

        ⋅(−6.622−0.740⋅ⅈ)

        ~R3−6.622+0.740⋅ⅈ⋅R2→R3?Subtract 6.622+0.740⋅ⅈ × row 2 from row 3:a3,1=0−6.622+0.740⋅ⅈ1⋅0=0a3,2=6.622+0.740⋅ⅈ−6.622+0.740⋅ⅈ1⋅1=0a3,3=2.996+8.397⋅ⅈ−6.622+0.740⋅ⅈ1⋅(0.587+1.202⋅ⅈ)=0a3,4=0−6.622+0.740⋅ⅈ1⋅0=0(10.126−0.247⋅ⅈ0.882−1.727⋅ⅈ0010.587+1.202⋅ⅈ00000)

        ⋅(−0.126+0.247⋅ⅈ)

        ~R1−0.126−0.247⋅ⅈ⋅R2→R1?Subtract 0.126−0.247⋅ⅈ × row 2 from row 1:a1,1=1−0.126−0.247⋅ⅈ1⋅0=1a1,2=0.126−0.247⋅ⅈ−0.126−0.247⋅ⅈ1⋅1=0a1,3=0.882−1.727⋅ⅈ−0.126−0.247⋅ⅈ1⋅(0.587+1.202⋅ⅈ)≈0.511−1.734⋅ⅈa1,4=0−0.126−0.247⋅ⅈ1⋅0=0(100.511−1.734⋅ⅈ0010.587+1.202⋅ⅈ00000)
        {x1+0.511−1.734⋅ⅈ⋅x3=0x2+0.587+1.202⋅ⅈ⋅x3=0 (1)
        • Find the variable x2 from the equation 2 of the system (1):

          x2=−0.587−1.202⋅ⅈ⁢x3

        • Find the variable x1 from the equation 1 of the system (1):

          x1=−0.511+1.734⋅ⅈ⁢x3

        Answer:

        • x1=−0.511+1.734⋅ⅈ⁢x3
        • x2=−0.587−1.202⋅ⅈ⁢x3
        • x3=x3
        (1.641+3.215⋅ⅈ≠0,5.011+4.449⋅ⅈ≠0)

        General Solution: X=(−0.511+1.734⋅ⅈ⁢x3−0.587−1.202⋅ⅈ⁢x3x3)

        The solution set: {x3⋅(−0.511+1.734⋅ⅈ−0.587−1.202⋅ⅈ1)}

        Let x3=1, v2≈(−0.511+1.734⋅ⅈ−0.587−1.202⋅ⅈ1)

      3. λ3≈2.359+3.215⋅ⅈ

        A−λ3⁢I≈(1.641−3.215⋅ⅈ1755.641−3.215⋅ⅈ2375.641−3.215⋅ⅈ)

        A⁢v=λ⁢v *

        (A−λ⁢I)⋅v=0

        So we have a homogeneous system of linear equations, we solve it by Gaussian Elimination:

        (1.641−3.215⋅ⅈ17055.641−3.215⋅ⅈ20375.641−3.215⋅ⅈ0)

        ⋅(0.126+0.247⋅ⅈ)

        ~R1∕(1.641−3.215⋅ⅈ)→R11.641−3.215⋅ⅈ≠0?Divide row 1 by 1.641−3.215⋅ⅈ:a1,1=1.641−3.215⋅ⅈ⋅(11.641−3.215⋅ⅈ)=1a1,2=1⋅(11.641−3.215⋅ⅈ)≈0.126+0.247⋅ⅈa1,3=7⋅(11.641−3.215⋅ⅈ)≈0.882+1.727⋅ⅈa1,4=0⋅(11.641−3.215⋅ⅈ)=0(10.126+0.247⋅ⅈ0.882+1.727⋅ⅈ055.641−3.215⋅ⅈ20375.641−3.215⋅ⅈ0)

        ⋅(−5)

        ~R2−5⋅R1→R2?Subtract 5 × row 1 from row 2:a2,1=5−51⋅1=0a2,2=5.641−3.215⋅ⅈ−51⋅(0.126+0.247⋅ⅈ)≈5.011−4.449⋅ⅈa2,3=2−51⋅(0.882+1.727⋅ⅈ)≈−2.408−8.636⋅ⅈa2,4=0−51⋅0=0(10.126+0.247⋅ⅈ0.882+1.727⋅ⅈ005.011−4.449⋅ⅈ−2.408−8.636⋅ⅈ0375.641−3.215⋅ⅈ0)

        ⋅(−3)

        ~R3−3⋅R1→R3?Subtract 3 × row 1 from row 3:a3,1=3−31⋅1=0a3,2=7−31⋅(0.126+0.247⋅ⅈ)≈6.622−0.740⋅ⅈa3,3=5.641−3.215⋅ⅈ−31⋅(0.882+1.727⋅ⅈ)≈2.996−8.397⋅ⅈa3,4=0−31⋅0=0(10.126+0.247⋅ⅈ0.882+1.727⋅ⅈ005.011−4.449⋅ⅈ−2.408−8.636⋅ⅈ006.622−0.740⋅ⅈ2.996−8.397⋅ⅈ0)

        ⋅(0.112+0.099⋅ⅈ)

        ~R2∕(5.011−4.449⋅ⅈ)→R25.011−4.449⋅ⅈ≠0?Divide row 2 by 5.011−4.449⋅ⅈ:a2,1=0⋅(15.011−4.449⋅ⅈ)=0a2,2=5.011−4.449⋅ⅈ⋅(15.011−4.449⋅ⅈ)=1a2,3=−2.408−8.636⋅ⅈ⋅(15.011−4.449⋅ⅈ)≈0.587−1.202⋅ⅈa2,4=0⋅(15.011−4.449⋅ⅈ)=0(10.126+0.247⋅ⅈ0.882+1.727⋅ⅈ0010.587−1.202⋅ⅈ006.622−0.740⋅ⅈ2.996−8.397⋅ⅈ0)

        ⋅(−6.622+0.740⋅ⅈ)

        ~R3−6.622−0.740⋅ⅈ⋅R2→R3?Subtract 6.622−0.740⋅ⅈ × row 2 from row 3:a3,1=0−6.622−0.740⋅ⅈ1⋅0=0a3,2=6.622−0.740⋅ⅈ−6.622−0.740⋅ⅈ1⋅1=0a3,3=2.996−8.397⋅ⅈ−6.622−0.740⋅ⅈ1⋅(0.587−1.202⋅ⅈ)=0a3,4=0−6.622−0.740⋅ⅈ1⋅0=0(10.126+0.247⋅ⅈ0.882+1.727⋅ⅈ0010.587−1.202⋅ⅈ00000)

        ⋅(−0.126−0.247⋅ⅈ)

        ~R1−0.126+0.247⋅ⅈ⋅R2→R1?Subtract 0.126+0.247⋅ⅈ × row 2 from row 1:a1,1=1−0.126+0.247⋅ⅈ1⋅0=1a1,2=0.126+0.247⋅ⅈ−0.126+0.247⋅ⅈ1⋅1=0a1,3=0.882+1.727⋅ⅈ−0.126+0.247⋅ⅈ1⋅(0.587−1.202⋅ⅈ)≈0.511+1.734⋅ⅈa1,4=0−0.126+0.247⋅ⅈ1⋅0=0(100.511+1.734⋅ⅈ0010.587−1.202⋅ⅈ00000)
        {x1+0.511+1.734⋅ⅈ⋅x3=0x2+0.587−1.202⋅ⅈ⋅x3=0 (1)
        • Find the variable x2 from the equation 2 of the system (1):

          x2=−0.587+1.202⋅ⅈ⁢x3

        • Find the variable x1 from the equation 1 of the system (1):

          x1=−0.511−1.734⋅ⅈ⁢x3

        Answer:

        • x1=−0.511−1.734⋅ⅈ⁢x3
        • x2=−0.587+1.202⋅ⅈ⁢x3
        • x3=x3
        (1.641−3.215⋅ⅈ≠0,5.011−4.449⋅ⅈ≠0)

        General Solution: X=(−0.511−1.734⋅ⅈ⁢x3−0.587+1.202⋅ⅈ⁢x3x3)

        The solution set: {x3⋅(−0.511−1.734⋅ⅈ−0.587+1.202⋅ⅈ1)}

        Let x3=1, v3≈(−0.511−1.734⋅ⅈ−0.587+1.202⋅ⅈ1)

Follow us on Social Media

Want an A to Z guide on how to write an essay? If you’re tired of the boring lectures from your professor, then subscribe to our YouTube channel. Here, we explore everything related to essay writing in a smooth and easy to understand way.